46 research outputs found

    Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.

    Get PDF
    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome

    Selection of chromosomal DNA libraries using a multiplex CRISPR system.

    Get PDF
    The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function

    Human eIF3: from 'blobology' to biological insight.

    No full text
    Translation in eukaryotes is highly regulated during initiation, a process impacted by numerous readouts of a cell's state. There are many cases in which cellular messenger RNAs likely do not follow the canonical 'scanning' mechanism of translation initiation, but the molecular mechanisms underlying these pathways are still being uncovered. Some RNA viruses such as the hepatitis C virus use highly structured RNA elements termed internal ribosome entry sites (IRESs) that commandeer eukaryotic translation initiation, by using specific interactions with the general eukaryotic translation initiation factor eIF3. Here, I present evidence that, in addition to its general role in translation, eIF3 in humans and likely in all multicellular eukaryotes also acts as a translational activator or repressor by binding RNA structures in the 5'-untranslated regions of specific mRNAs, analogous to the role of the mediator complex in transcription. Furthermore, eIF3 in multicellular eukaryotes also harbours a 5' 7-methylguanosine cap-binding subunit-eIF3d-which replaces the general cap-binding initiation factor eIF4E in the translation of select mRNAs. Based on results from cell biological, biochemical and structural studies of eIF3, it is likely that human translation initiation proceeds through dozens of different molecular pathways, the vast majority of which remain to be explored.This article is part of the themed issue 'Perspectives on the ribosome'

    Human eIF3: from 'blobology' to biological insight.

    No full text

    Regulating the Ribosome: A Spotlight on RNA Dark Matter

    No full text
    In this issue, Pircher et al. (2014) show that an abundant ribosome-associated 18 nt noncoding RNA (ncRNA), derived from the open reading frame of an mRNA, acts directly on the ribosome and regulates global translation levels in response to hypertonic shock

    Editorial overview: Energy biotechnology

    No full text
    corecore